
Virtual Machine Showdown: Stack Versus Registers

Yunhe Shi, David Gregg, Andrew Beatty
Department of Computer Science
University of Dublin, Trinity College

Dublin 2, Ireland

{yshi, David.Gregg,
Andrew.Beatty}@cs.tcd.ie

M. Anton Ertl
Institut für Computersprachen

TU Wien
Argentinierstraße 8

A-1040 Wien, Austria

anton@complang.tuwien.ac.at

ABSTRACT
Virtual machines (VMs) are commonly used to distribute
programs in an architecture-neutral format, which can eas-
ily be interpreted or compiled. A long-running question in
the design of VMs is whether stack architecture or register
architecture can be implemented more efficiently with an
interpreter. We extend existing work on comparing virtual
stack and virtual register architectures in two ways. Firstly,
our translation from stack to register code is much more
sophisticated. The result is that we eliminate an average
of more than 47% of executed VM instructions, with the
register machine bytecode size only 25% larger than that of
the corresponding stack bytecode. Secondly we present an
implementation of a register machine in a fully standard-
compliant implementation of the Java VM. We find that,
on the Pentium 4, the register architecture requires an av-
erage of 32.3% less time to execute standard benchmarks if
dispatch is performed using a C switch statement. Even if
more efficient threaded dispatch is available (which requires
labels as first class values), the reduction in running time is
still approximately 26.5% for the register architecture.

Categories and Subject Descriptors
D.3 [Software]: Programming Language; D.3.4 [Progr-
amming Language]: Processor—Interpreter

General Terms
Performance, Language

Keywords
Interpreter, Virtual Machine, Register Architecture, Stack
Architecture

1. MOTIVATION
Virtual machines (VMs) are commonly used to distribute
programs in an architecture-neutral format, which can easily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05, June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

be interpreted or compiled. The most popular VMs, such as
the Java VM, use a virtual stack architecture, rather than
the register architecture that dominates in real processors.

A long-running question in the design of VMs is whether
stack architecture or register architecture can be implemented
more efficiently with an interpreter. On the one hand stack
architectures allow smaller VM code so less code must be
fetched per VM instruction executed. On the other hand,
stack machines require more VM instructions for a given
computation, each of which requires an expensive (usually
unpredictable) indirect branch for VM instruction dispatch.
Several authors have discussed the issue [12, 15, 11, 16] and
presented small examples where each architecture performs
better, but no general conclusions can be drawn without a
larger study.

The first large-scale quantitative results on this question
were presented by Davis et al. [5, 10] who translated Java
VM stack code to a corresponding register machine code. A
straightforward translation strategy was used, with simple
compiler optimizations to eliminate instructions which be-
come unnecessary in register format. The resulting register
code required around 35% fewer executed VM instructions
to perform the same computation than the stack architec-
ture. However, the resulting register VM code was around
45% larger than the original stack code and resulted in a
similar increase in bytecodes fetched. Given the high cost of
unpredictable indirect branches, these results strongly sug-
gest that register VMs can be implemented more efficiently
than stack VMs using an interpreter. However, Davis et
al’s work did not include an implementation of the virtual
register architecture, so no real running times could be pre-
sented.

This paper extends the work of Davis et al. in two re-
spects. First, our translation from stack to register code is
much more sophisticated. We use a more aggressive copy
propagation approach to eliminate almost all of the stack
load and store VM instructions. We also optimize constant
load instructions, to eliminate common constant loads and
move constant loads out of loops. The result is that an av-
erage of more than 47% of executed VM instructions are
eliminated. The resulting register VM code is roughly 25%
larger than the original stack code, compared with 45% for
Davis et al. We find that the increased cost of fetching
more VM code involves only 1.07 extra real machine loads
per VM instruction eliminated. Given that VM dispatches
are much more expensive than real machine loads, this in-
dicates strongly that register VM code is likely to be much

153

more time-efficient when implemented with an interpreter,
although at the cost of increased VM code size.
The second contribution of our work is an implementation
of a register machine in a fully standard-compliant imple-
mentation of the Java VM. While implementing the register
VM interpreter is simple, integrating it with the garbage col-
lection, exception handling and threading systems is more
complicated. We present experimental results on the be-
haviour of the stack and register versions of JVMs, including
hardware performance counter results. We find that on the
Pentium 4, the register architecture requires an average of
32.3% less time to execute standard benchmarks if dispatch
is performed using a C switch statement. Even if more ef-
ficient threaded dispatch is available (which requires labels
as first class values), the reduction in running time is still
about 26.5% for the register architecture.
The rest of this paper is organised as follows. In section 2
we describe the main differences between virtual stack and
virtual register machines from the point of view of the in-
terpreter. In section 3, we show how stack-based Java byte-
code is translated into register-based bytecode. In sections 4
and 5, our copy propagation and constant instruction opti-
mization algorithms are presented. Finally, in section 6, we
analyze the static and dynamic code behaviour before and
after optimization, and we show the performance improve-
ment in our register-based JVM when compared to original
stack-based JVM.

2. STACK VERSUS REGISTERS
The cost of executing a VM instruction in an interpreter
consists of three components:

• Dispatching the instruction
• Accessing the operands
• Performing the computation
Instruction dispatch involves fetching the next VM in-
struction from memory, and jumping to the corresponding
segment of interpreter code that implements the VM in-
struction. A given task can often be expressed using fewer
register machine instructions than stack ones. For example,
the local variable assignment a = b + cmight be translated
to stack JVM code as ILOAD c, ILOAD b, IADD, ISTORE a.
In a virtual register machine, the same code would be a
single instruction IADD a, b, c. Thus, virtual register ma-
chines have the potential to significantly reduce the number
of instruction dispatches.
In C, dispatch is typically implemented with a large switch
statement, with one case for each opcode in the VM instruc-
tion set. Switch dispatch is simple to implement, but is
rather inefficient. Most compilers produce a range check,
and an additional unconditional branch in the generated
code for the switch. In addition, the indirect branch gen-
erated by most compilers is highly (around 95% [7]) unpre-
dictable on current architectures.
The main alternative to the switch statement is threaded

dispatch. Threaded dispatch takes advantage of languages
with labels as first class values (such as GNU C and assem-
bly language) to optimize the dispatch process. This allows
the range check and additional unconditional branches to
be eliminated, and allows the code to be restructured to im-
prove the predictability of the dispatch indirect branch (to
around 45% [7]).

More sophisticated approaches, such as Piumarta and Ri-
cardi’s [14] approach of copying executable code just-in-time
further reduce dispatch costs, at a further cost in simplicity,
portability and memory consumption. Context threading
[2] uses subroutine threading to change indirect branch to
call/return, which better exploits hardware’s return-address
stack, to reduce the cost of dispatches. As the cost of dis-
patches falls, any benefit from using a register VM instead of
a stack VM falls. However, switch and simple threaded dis-
patch are the most commonly used interpreter techniques,
and switch is the only efficient alternative if ANSI C must
be used.
The second cost component of executing a VM instruction
is accessing the operands. The location of the operands
must appear explicitly in register code, whereas in stack code
operands are found relative to the stack pointer. Thus, the
average register instruction is longer than the corresponding
stack instruction; register code is larger than stack code;
and register code requires more memory fetches to execute.
Small code size, and small number of memory fetches are
the main reasons why stack architectures are so popular for
VMs.
The final cost component of executing a VM instruction
is performing the computation. Given that most VM in-
structions perform a simple computation, such as an add
or load, this is usually the smallest part of the cost. The
basic computation has to be performed, regardless of the
format of the intermediate representation. However, elimi-
nating invariant and common expressions is much easier on
a register machine, which we exploit to eliminate repeated
loads of identical constants (see section 5).

3. TRANSLATING STACK TO REGISTER
In this section we describe a system of translating JVM
stack code to register code just-in-time. However, it is im-
portant to note that we do not advocate run-time transla-
tion from stack to register format as the best or only way
to use virtual register machines. This is clearly a possibil-
ity, maybe even an attractive one, but our main intention in
doing this work is to evaluate free-standing virtual register
machines. Run-time translation is simply a mechanism we
use to compare stack and register versions of the JVM eas-
ily. In a real system, we would use only the register machine,
and compile for that directly.
Our implementation of the JVM pushes a new Java frame
onto a run-time stack for each method call. The Java frame
contains local variables, frame data, and the operand stack
for the method(See figure 1). In the stack-based JVM, a
local variable is accessed using an index, and the operand
stack is accessed via the stack pointer. In the register-based
JVM both the local variables and operand stack can be con-
sidered as virtual registers for the method. There is a simple
mapping from stack locations to register numbers, because
the height and contents of the JVM operand stack are known
at any point in a program [9].
All values on the operand stack in a Java frame can be con-
sidered as temporary variables (registers) for a method and
therefore are short-lived. Their scope of life is between the
instructions that push them onto the operand stack and the
instruction that consumes the value on the operand stack.
On the other hand, local variables (also registers) are long-
lived and their life scope is the time of method execution.
In the stack-based JVM, most operands of an instruction

154

Figure 1: The structure of a Java frame

are implicit; they are found on the top of the operand stack.
Most of the stack-based JVM instructions are translated into
corresponding register-based virtual machine instructions,
with implicit operands translated to explicit operand regis-
ters. The new register-based instructions use one byte for
the opcode and one byte for each operand register (similar
to the stack JVM).
Table 1 shows a simple example of bytecode translation.
The function of the bytecode is to add two integers from two
local variables and store the result back into another local
variable.
There are a few exceptions to the above one-to-one trans-
lation rule:

• Operand stack pop instructions(pop and pop2) are trans-
lated into nop because they are not needed in register-
based code.

• Instructions related to loading of a local variable onto
operand stack and storing data from operand stack
into a local variable are translated into move instruc-
tions

• Stack manipulation instructions(e.g. dup, dup2 . . .)
are translated into appropriate sequences of move in-
structions by tracking the state of the operand stack

3.1 Parameter Passing
A common way to implement stack-based JVM is to over-
lap the current Java frame’s operand stack (which contains
a method call’s parameters) and a new Java frame’s local
variables. The parameters on the stack in the current Java
frame will become the start of the called method’s local vari-
ables. Although this provides efficient parameter passing, it
prevents us from copy propagating into the source regis-
ters (parameters) of a method call. To solve this problem,
we change the parameter passing mechanism in the register
VM to non-overlapping and copy all the parameters to the
location where the new Java frame will start. The benefit is
that we can eliminate more move instructions. The draw-
back is that we need to copy all the parameters before we
push a new Java frame onto the Java stack.

3.2 Variable Length Instructions
Most of the instructions in Java bytecode are fixed-length.
There are three variable-length instructions in stack-based

Table 1: Bytecode translation. Assumption: cur-
rent stack pointer before the code shown below is
10. In most cases, the first operand in an instruc-
tion is the destination register
Stack-based bytecode Register-based bytecode
iload 1 move r10, r1
iload 2 move r11, r2
iadd iadd r10, r10, r11
istore 3 move r3, r10

JVM instruction set (multianewarray, tableswitch, and lookup-
switch). In addition to the original three variable-length in-
structions, all method call instructions become variable in
length after the translation to register-based bytecode for-
mat. Here is the instruction format for method call:

op cpi1 cpi2 ret_reg arg1 arg2 ...

op is the opcode of a method call. cpi1 and cpi2 are the
two-byte constant-pool indexes. ret reg is the return value
register number. arg1, arg2, . . . are the argument register
numbers. The number of arguments, which can be deter-
mined when the method call instructions are executed in
the interpreter loop, are not part of the instruction format.
The main reason for doing so is to reduce the codesize.

4. COPY PROPAGATION
In the stack-based JVM, operands are pushed from local
variables onto the operand stack before they can be used,
and results must be stored from the stack to local variables.
More than 40% of executed instructions in common Java
benchmarks consist of loads and stores between local vari-
ables and the stack [5]. Most of these stack push and pop
operations are redundant in our register-based JVM as in-
structions can directly use local variables (registers) with-
out going through the stack. In the translation stage, all
loads and stores from/to local variables are translated into
register move instructions. In order to remove these redun-
dant move instructions, we apply both forward and back-
ward copy propagation.
We take advantage of the stack-based JVM’s stack op-
eration semantics to help implement both varieties of copy
propagation. During copy propagation, we use the stack
pointer information after each instruction, which tells us
which values on the stack are still alive.

4.1 Forward Copy Propagation
The convention in Java is that the operand stack is usually
empty at the end of each source statement, so the lifetimes
of values on the stack are usually short. Values pushed onto
the operand stack are almost immediately consumed by a
following instruction. Thus, we mainly focus on copy prop-
agation optimization on basic blocks.
We separate move instructions into different categories
and apply different types of copy propagation depending on
the location of the source and destination operands in the
original JVM stack code. We apply forward propagation to
the following categories of move instructions:

• Local variables → stack
• Local variables → local variables (these do not exist
in the original translated code but will appear after
forward or backward copy propagation)

155

Table 2: Forward copy propagation algorithm. X
is a move instruction being copy propagated and Y
is a following instruction in the same basic block.
src and dest are source and destination registers of
these instructions

X
Y src dest

X.src = Y.src X.dest = Y.src
src Do nothing Replace Y.src with X.src

X.src = Y.dest X.dest = Y.dest
dest X.src redefined after Y X.dest redefined after Y

Can’t remove X / stop Can remove X / stop

• Stack → stack (these originate from the translation of
dup instrutions)

The main benefit of forward copy propagation is to col-
lapse dependencies on move operations. In most cases, this
allows the move to be eliminated as dead code.
While doing forward copy propagation, we try to copy
forward and identify whether a move instruction can be re-
moved (See Table 2). X is a move instruction which is being
copied forward and Y is a following instruction in the same
basic block. X.dest is the destination register of the move
instruction and X.src is the source register of the move in-
struction. In a following Y instruction, Y.src represents all
the source registers and Y.dest is the destination register.
The forward copy propagation algorithm is implemented
with additional operand stack pointer information after each
instruction to help to decide whether a register is alive or
redefined. The following outlines our algorithm for copy
propagation:

• Y.dest = X.dest. X.dest is redefined, stop copy prop-
agation and remove instruction X.

• After instruction Y, stack pointer is below X.dest if
X.dest is a register on stack. X.dest can be considered
to be redefined, stop copy propagation, and remove
instruction X.

• If Y is a return instruction, stop copy propagation and
remove instruction X.

• If Y is an athrow and X.dest is on operand stack, stop
copy propagation and remove instruction X because
the operand stack will be cleared during exception han-
dling.

• Y.dest = X.src. X.src is redefined and value in X.dest
would still be be used after Y instruction. Stop copy
propagation and don’t remove instruction X. However,
We can continue to find out whether X.dest is not used
in the following instructions and then is redefined. If
so, remove instruction X.

• After instruction Y, stack pointer is below X.src if
X.src is a register on stack. X.src can be considered as
being redefined, stop copy propagation and don’t re-
move instruction X. We ignore this rules for the second
run of forward copy propagation; it is quite similar to
above rule.

Several techniques are used to improve the ability of our
algorithm to eliminate move insructions.

• All dup (such as dup, dup2 x2) instructions are trans-
lated into one or more move instructions which allows
them to be eliminated using our algorithm.

• All iinc instructions are moved as far towards the end
of a basic block as possible because iinc instructions
are commonly used to increment an index into an ar-
ray. The push of the index onto the stack and iinc
instruction used to increase the index are usually next
to each other and thus prevent us from forward copy
propagation.

• In a few special cases, forward copy propagation across
basic block boundaries is used to eliminate more move
instructions. If amove instruction’s forward copy prop-
agation reaches the end of a basic block and its desti-
nation operand is on the stack, we can follow its suc-
cessor basic blocks to find all the usages of the operand
and then trace back from the operand consumption in-
struction to the definition instruction. If we don’t find
any other instructions except the one instruction be-
ing copy propagated forward, then we can continue the
cross basic block copy propagation.

4.2 Backward Copy Propagation
Backward copy propagation is used to backward copy and
eliminate the following types of move instructions:

• Stack → local variables
Most stack JVM instructions put their result on the stack
and a stores instruction stores the result into a local vari-
able. The role of backward copy propagation is to store the
result directly into the local variable without going through
the operand stack. In reality, we can’t copy forward this
type of move instruction because after the instruction the
source register is above the top of the stack pointer. Due to
the characteristics of this type of move instruction, a lot of
criteria required by backward copy propagation are already
satisfied. Suppose Z is a move instruction being considered
for backward copy propagation. Y is a previous instruction
in the same basic block which has Y.dest = Z.src. Whether
we can do the backward copy propagation and remove in-
struction Z depends on the following criteria:

1. Y.dest is a register

2. Z is a move instruction

3. Z.dest is a register

4. Z.src = Y.dest

5. Z.dest is not consumed between Y..Z

6. Z.dest is not redefined between Y..Z

7. Y.dest is not alive out of the basic block, which is
satisfied because Y.dest = Z.src and Z.src is above the
top of stack pointer after Z

8. After the copy propagation, original Y.dest(Z.src) is
not used anymore. It is satisfied as long as 5 and 6
are satisfied because Y.dest(Z.src) is above the top of
stack pointer after the instruction Z.

156

Another way to think of the backward copy propagation
in our case is that some computation puts the result on the
operand stack and then a move instruction stores the result
from the stack to a local variable in the stack-based Java
virtual machine. In a register-based Java virtual machine,
we can shortcut the steps and save the result directly into a
local variable.
A simple version of across basic-block backward copy prop-
agation is also used. If a backward copy instruction reaches
the beginning of a basic block, we need to find out whether
we can backward copy to all its predecessors. If so, we back-
ward copy to all its predecessors.

4.3 Example
The following example demonstrates both forward and
backward copy propagation. We assume that the first operand
register in each instruction is the destination register.

1. move r10, r1 //iload_1

2. move r11, r2 //iload_2

3. iadd r10, r10, r11 //iadd

4. move r3, r10 //istore_3

Instructions 1 and 2 move the values of registers r1 and r2
(local variables) to registers r10 and r11 (stack) respectively.
Instruction 3 adds the values in register r10 and r11 (stack)
and put the result back into register r10 (stack). Instruction
4 moves the register r10 (stack) into register r3 (local vari-
able). This is typical of stack-based Java virtual machine
code. We can apply forward copy propagation to instruc-
tions 1 and 2 and their source are copy propagated into
instruction 3’s sources. We can apply backward copy prop-
agation to instruction 4 and backward copy progagate into
instruction 3’s destination which is replaced by instruction
4’s destination. After both copy propagations, instructions
1, 2, and 4 can be removed. The only remaining instruction
is:

3. iadd r3, r1, r2

5. CONSTANT INSTRUCTIONS
In stack-based Java virtual machine, there are a large
number of constant instructions pushing immediate constant
values or constant values from constant pool of a class onto
the operand stack. For example, we have found that an
average of more than 6% of executed instructions in the
SPECjvm98 and Java Grande benchmarks push constants
onto the stack. In many cases the same constant is pushed
onto the stack every iteration of a loop. Unfortunately, it
is difficult to reuse constants in a stack VM, because VM
instructions which take values from the stack also destroy
those values. Virtual register machines have no such prob-
lems. Once a value is loaded to a register, it can be used
repeatedly until the end of the method. To remove redun-
dant loads of constant values, we apply the following opti-
mizations.

5.1 Combine Constant Instruction and iinc
Instruction

In the stack-based JVM, the iinc instruction can only be
used to increase a local variable by an immediate value.
However, in the register machine we make no distinction
between stack and local variables, so we can use the iinc

instruction with all registers. This allows us to combine se-
quences of instructions which add a small integer to an value
on the stack.
We scan the translated register-based instructions to find
all those iadd and isub instructions which has one of its
operands pushed by a constant instruction with a byte con-
stant value , due to the byte immediate value in iinc instruc-
tion. Then we use an iinc instruction to replace an iadd(or
isub) instruction and a constant instruction.

5.2 Move Constant Instructions out of Loop
and Eliminate Duplicate Constant
Instruction

Because the storage locations of most constant instruc-
tions are on the stack, they are temporary variables, and
are quickly consumed by a following instruction. The only
way that we can reuse the constant value is to allocate a
dedicated register for the same constant value above the
operand stack. We only optimize those constant instruc-
tions that store a constant values onto the stack locations
and those constant values are consumed in the same basic
block. The constant instructions that store value into lo-
cal variables, which have wider scope, are not targeted by
our optimization. A constant instruction which stores di-
rectly into a local variable can appear after backward copy
propagation. The following steps are carried out to optimize
constant instructions:

• Scan all basic blocks in a method to find (1) multiple
constant VM instructions which push the same con-
stant and (2) constant VM instructions that are inside
a loop. All constant values pushed by these VM in-
structions onto the operand stack must be consumed
by a following instruction in the same basic block for
our optimization to be applied.

• A dedicated virtual register is allocated for each con-
stant value used in the method1. The constant VM in-
struction’s destination virtual register will be updated
to the new dedicated virtual register, as will the VM
instruction(s) that consume the constant.

• All load constant VM instructions are moved to the
beginning of the basic block. All load constant VM
instructions inside a loop are moved to a loop pre-
header.

• The immediate dominator tree is used to eliminate re-
dundant initializations of dedicated constant registers.

The above procedure produces two benefits. First, redun-
dant loads of the same constant are eliminated. If there are
more than two constant instructions that try to initialize the
same dedicated constant registers in the same basic block or
in two basic blocks in which one dominates the other, the
duplicate dedicated constant register initialization instruc-
tion can be removed. The other benefit is to allow us to
move the constant instructions out of loops.

1Given that we use one byte indices to specify the virtual
register, a method can use up to 256 virtual registers. Thus,
our current implementation does not attempt to minimize
register usage, because we have far more registers than we
need. A simple register allocator could greatly reduce regis-
ter requirements.

157

Figure 2: The control flow of the medium-size ex-
ample

5.3 Putting it all together
The runtime process for translating stack-based bytecode
and optimizing the resulting register-based instructions for
a Java method is as follows:

• Find basic blocks, their predecessors and successors
• Translate stack-based bytecode into intermediate register-
based bytecode representation.

• Find loops and build the dominator matrix.
• Apply forward copy propagation.
• Apply backward copy propagation.
• Combine constant instruction and iadd/isub instruc-
tions into iinc instructions.

• Move iinc instructions as far down their basic block as
possible.

• Eliminate redundant constant load operations and move
constant load operations from loops.

• Apply forward copy propagation again2.
• Write the optimized register code into virtual register
bytecode in memory.

In order to better demonstrate the effect of the optimiza-
tions, we present the following more complicated example
with 4 basic blocks and one loop(See Figure 2). The number
operands without r are either constant-pool indexes, imme-
diate values, or branch offsets(absolute basic block number
is used here instead to clearly indicate which basic block is
the target of a jump):

The translated intermediate code with all operands explic-
itly specified before optimizations:

basic block(0):

1. iconst_0 r17

2. move r1, r17

3. move r17, r0

4. getfield_quick 3, 0, r17, r17

5. move r2, r17

2We have found that we can eliminate a small percentage of
move instruction by applying the forward copy propagation
algorithm a second time. dup instructions generally shuffle
the stack operands around the stack and redefine the values
in those registers. This will stop the copy propagation. Af-
ter first forward copy propagation and backward copy prop-
agation, new opportunities for forward copy propation are
created.

6. move r17, r0

7. agetfield_quick 2, 0, r17, r17

8. move r3, r17

9. move r17, r0

10. getfield_quick 4, 0, r17, r17

11. move r4, r17

12. iconst_0 r17

13. move r5, r17

14. goto 0, 2 //jump to basic block 2

basic block(1)

15. bipush r17, 31

16. move r18, r1

17. imul r17, r17, r18

18. move r18, r3

19. move r19, r2

20. iinc r2, r2, r1

21. caload r18, r18, r19

22. iadd r17, r17, r18,

23. move r1, r17

24. iinc r5, r5, 1,

basic block(2):

25. move r17, r5

26. move r18, r4

27. if_icmplt 0, 1, r17, r18

// jump to basic block 1

basic block(3):

28. move r17, r1

29. ireturn r17

The intermediate code after optimizations:

basic block(0):

15. bipush r20, 31 //constant moved out of loop

1. iconst_0 r1

4. getfield_quick 3, 0, r2, r0

7. agetfield_quick 2, 0, r3, r0

10. getfield_quick 4, 0, r4, r0

12. iconst_0 r5

14. goto 0, 2

basic block(1):

17. imul r17, r20, r1

21. caload operand: r18, r3, r2

22. iadd operand: r1, r17, r18

24. iinc operand: r5, r5, r1

20. iinc operand: r2, r2, r1

basic block(2):

27. if_icmplt operand: 0, 1, r5, r4

basic block(3):

29. ireturn r1

All the move instructions have been eliminated after the
optimizations. Constant instruction 15 has been assigned a
new dedicated register number 20 to store the constant value
and has been moved out of loop to its preheader, which is
then combined with its predecessors because it has only one
predecessor. Instruction 20 has been moved down inside its
basic block to provide more opportunities for copy propaga-
tion.

158

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

AVERAGE

Nop-Eliminated Eliminated Move Constant Eliminated Moves Remaining Constant Remaining Others

Figure 3: Breakdown of statically appearing VM
instructions before and after optimization for all the
benchmarks.

6. EXPERIMENTAL EVALUATION
Stack-based JVM bytecode is very compact because the
location of operands is implicitly on the operand stack. Re-
gister-based bytecode needs to have all those implicit operands
as part of an instruction. That means that the register-based
code size will usually be much larger than stack-based byte-
code. Larger code size means that more instruction byte-
code must be fetched from memory as part of VM instruc-
tion execution, slowing down the register machine. On the
other hand, virtual register machines can express compu-
tations using fewer VM instructions than a corresponding
stack machine. Dispatching a VM instruction is expensive,
so the reduction in executed VM instructions is likely to sig-
nificantly improve the speed of the virtual register machine.
An important question is whether the increase in VM in-
struction fetches or the decrease in dispatches from using
a virtual register machine has a greater effect on execution
time. In this section we describe the experimental evalua-
tion of two interpreter-based JVMs. The first is a conven-
tional stack-based JVM (Sun’s J2ME CDC 1.0 - foundation
profile), and the second is a modified version of this JVM
which translates stack code into register code just-in-time,
and implements an interpreter for a virtual register machine.
We use the SPECjvm98 client benchmarks[1] (size 100
inputs) and Java Grande[3] (Section 3, data set size A) to
benchmark both implementations of the JVM. Methods are
translated to register code the first time they are executed;
thus all measurements in the following analysis include only
methods that are executed at least once. The measurements
include both benchmark program code and Java library code
executed by the VMs.

6.1 Static Instruction Analysis after
Optimization

Generally, there is a one-to-one correspondence between
stack VM instructions and the translated register VM in-
structions. However there are a couple of exceptions. First,
the JVM includes some very complicated instructions for
duplicating data on the stack, which we translate into a
sequence of move VM instructions. The result of this trans-
formation is that the number of static instructions in the
translated code is about 0.35% larger than in the stack code.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

AVERAGE

Move Eliminated Constant Eliminated Move Constant Others

Figure 4: Breakdown of dynamically appearing VM
instructions before and after optimization for all the
benchmarks.

Secondly, some JVM stack manipulation instructions (such
as pop and pop2) can simply be translated to nop instruc-
tions, and can be eliminated directly.
Figure 3 shows the breakdown of statically appearing VM
instructions after translation and optimization. On average
we can simply eliminate 2.84% of nop instructions (trans-
lated from pop and pop2) because they manipulate the stack
but perform no computation. Applying copy propagation al-
lows a further 33.67% of statically appearing instructions to
be eliminated. Our copy propagation algorithm is so suc-
cessful that the remaining moves instructs account for only
an average 0.78% of the original instructions. Almost all
moves are eliminated. Constant optimization allows a fur-
ther average of 6.95% of statically appearing VM instruc-
tions to be eliminated. The remaining load constant VM
instructions account for an average of 10.89% of the original
VM instructions. However, these figures are for statically
appearing code, so moving a constant load out of a loop
to a loop preheader does not result in any static reduction.
Overall, 43.47% of static VM instructions are eliminated.

6.2 Dynamic Instruction Analysis after
Optimization

In order to study the dynamic (runtime) behaviour of our
register-based JVM code, we counted the number of exe-
cuted VM instructions run without any optimization as the
starting point of our analysis. However, the stack VM in-
structions that translate to nop instructions have already
been eliminated at this point and are not included in the
analysis.
Figure 4 shows the breakdown of dynamically executed
VM instructions before and after optimization. Interstingly
move instructions account for a much greater percentage
of executed VM instructions than static ones. This allows
our copy propagation to eliminate move VM instructions
accounting for 43.78% of dynamically executed VM instruc-
tions. The remaining moves account for only 0.53% of the
original VM instructions. Applying constant optimizations
allows a further reduction of 3.33% of original VM instruc-
tions to be eliminated. The remaining dynamically executed
constant VM instructions account for 2.98%. However, there
are far more static constant instructions(17.84%) than those
dynamically run(6.26%) in the benchmarks. We discovered

159

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Code size Load

Figure 5: Increase in code size and resulting net in-
crease in bytecode loads from using a register rather
than stack architecture.

0.00 0.50 1.00 1.50 2.00 2.50

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

AVERAGE

Figure 6: Increase in dynamically loaded bytecode
instructions per VM instruction dispatch eliminated
by using a register rather than stack architecture.

that there are a large number of constant instructions in
the initialization bytecode which are usually executed only
once. On average, our optimizations remove 47.21% of the
dynamically executed original VM instructions.

6.3 Code Size
Generally speaking, the code size of register-based VM
instructions is larger than that of the corresponding stack
VM instructions. Figure 5 shows the percentage increase
in code size of our register machine code compared to the
original stack code. On average, the register code is 25.05%
larger than the original stack code, despite the fact that the
register machine requires 43% fewer static instructions than
the stack architecture. This is a significant increase in code
size, but it is far lower than the 45% increase reported by
Davis et al. [5].
As a result of the increased code size of the register-based
JVM, more VM instruction bytecodes must be fetched from
memory as the program is interpreted. Figure 5 also shows
the resulting increase in bytecode load. Interestingly, the
increase in overall code size is often very different from the
increase in instruction bytecode loaded in the parts of the
program that are executed most frequently. Nonetheless, the

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Read Write Total

Figure 7: Dynamic number of real machine load and
store required to access virtual registers in our vir-
tual register machine as a percentage of the corre-
sponding loads and stores to access the stack and
local variables in a virtual stack machine

0.00 0.50 1.00 1.50 2.00 2.50

Check

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Figure 8: The reduction of real machine memory
accesses for each register-based bytecode instruction
eliminated

average increase in loads is similar to the average increase
in code size, which is at 26.03%.
The performance advantage of using a register rather than
stack VM is that fewer VM instructions are needed. On
the other hand, this comes at the cost of increased bytecode
loads due to larger code. To measure the relative importance
of these two factors, we compared the number of extra dy-
namic bytecode loads required by the register machine, per
dynamically executed VM instruction eliminated. Figure 6
shows that the number of additional bytecode loads per VM
instruction eliminated is small at an average of 1.07%. On
most architectures one load costs much less to execute than
an instruction dispatch, with its difficult-to-predict indirect
branch. This strongly suggests that register machines can be
interpreted more efficiently on most modern architectures.

6.4 Dynamic Local Memory Access
Apart from real machine loads of instruction bytecodes,
the main source of real machine loads in a JVM interpreter
comes from moving data between the local variables and
the stack. In most interpreter-based JVM implementations,

160

the stack and the local variables are represented as arrays
in memory. Thus, moving a value from a local variable to
the stack (or vice versa) involves both a real machine load
to read the value from one array, and a real machine store
to write the value to the other array. Thus, adding a sim-
ple operation such as adding two numbers can involve large
numbers of real machine loads and stores to implement the
shuffling between the stack and registers.
In our register machine, the virtual registers are also rep-
resented as an array. However, VM instructions can access
their operands in the virtual register array directly, without
first moving the values to an operand stack array. Thus,
the virtual stack machine can actually require fewer real
machine loads and stores to perform the same computation.
Figure 7 shows (a simulated measure) the number of the dy-
namic real machine loads and stores required for accessing
the virtual register array, as a percentage of the correspond-
ing loads and stores for the stack JVM to access the local
variable and operand stack arrays. The virtual register ma-
chine requires only 67.8% as many real machine loads and
55.07% as many real machine writes, with an overall figure
of 62.58%.
In order to compare these numbers with the number of
additional loads required for fetching instruction bytecodes,
we expressed these memory operations as a ratio to the dy-
namically executed VM instructions eliminated by using the
virtual register machine. Figure 8 shows that on average, the
register VM requires 1.53 fewer real machine memory oper-
ations to access such variables. This is actually larger than
the number of additional loads required due to the larger
size of virtual register code.
However, these measures of memory accesses for the local
variables, the operand stack and the virtual registers depend
entirely on the assumption that they are implemented as
arrays in memory. In practice, we have little choice but
to use an array for the virtual registers, because there is no
way to index real machine registers like an array on most real
architectures. However, stack caching [6] can be used to keep
the topmost stack values in registers, and eliminate large
numbers of associated real machine loads and stores. For
example, Ertl [6] found that around 50% of stack access real
machine memory operations could be eliminated by keeping
just the topmost stack item in a register. Thus, in many
implementations, the virtual register architecture is likely
to need more real machine loads and stores to access these
kinds of values.

6.5 Timing Results
To measure the real running times of the stack and register-
based implementations of the JVM, we ran both VMs on
Pentium 3 and Pentium 4 systems. The stack-based JVM
simply interprets standard JVM bytecode. The running
time for the register-based JVM includes the time neces-
sary to translate and optimize each method the first time it
is executed. However, our translation routines are fast, and
consume less than 1% of the execution time, so we believe
the comparison is fair. In our performance benchmarking,
we run SPECjvm98 with a heap size of 70MB and Java
Grande with a heap size of 160MB. Each benchmark is run
independently.
We compare the performance of four different interpreter
implementations: (1) a stack-based JVM interpreter using
switch dispatch (see section 2), (2) a stack-based JVM inter-

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

AVERAGE

Threaded Switch

Figure 9: Register-based virtual machine reduction
in running time (based on average real running time
of five runs): switch and threaded (Pentium 3)

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

AVERAGE

Threaded Switch

Figure 10: Register-based virtual machine per-
formance improvement in terms of performance
counter running time: switch and threaded (Pen-
tium 4: performance counter)

preter using threaded dispatch, (3) a virtual register-based
JVM using switch dispatch and (4) a virtual register-based
JVM using threaded dispatch. For fairness, we always com-
pare implementations which use the same dispatch mecha-
nism.
Figure 9 shows the percentage reduction in running time
of our implementation of the virtual register machine com-
pared to the virtual stack machine for variations of both in-
terpreters using both switch and threaded dispatch. Switch
dispatch is more expensive, so the reduction in running time
is slightly larger (30.69%) than the threaded versions of the
interpreters (29.36%). Nonetheless, a reduction in the run-
ning time of around 30% for both variants of the interpreters
is a very significant improvement. There are few interpreter
optimizations that give a 30% reduction in running time.
Figure 10 shows the same figures for a Pentium 4 ma-
chine. The Pentium 4 has a very deep pipeline (20 stages)
so the cost of branch mispredictions is very much higher
than that of the Pentium 3. The result is that switch dis-
patch is very slow on the Pentium 4 due to the large number
of indirect branch mispredictions it causes. On average, the
switch-dispatch register machine requires 32.28% less exe-

161

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Cycles
(*500B)

Inst.
(*250B)

uop load
(*100B)

uop store
(*100B)

L1_DCM
(*2B)

Indirect
Branches

(*10B)

Indirect
Mispred.
(*10B)

Stack Threaded
Register Theaded
Stack Switch
Register Switch

Figure 11: Compress (Pentium 4 performance
counter results)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Cycles
(*500B)

Inst.
(*250B)

uop load
(*100B)

uop store
(*100B)

L1_DCM
(*2B)

Indirect
Branches

(*10B)

Indirect
Mispred.
(*10B)

Stack Threaded
Register Theaded
Stack Switch
Register Switch

Figure 12: Moldyn (Pentium 4 performance counter
results)

cution time than the switch-dispatch stack machine. The
corresponding figure for the threaded-dispatch JVMs is only
26.53%.
To more deeply explore the reasons for the relative per-
formance, we use the Pentium 4’s hardware performance
counters to measure various processor events during the ex-
ecution of the programs. Figures 11 and 12 show perfor-
mance counter results for the SPECjvm98 benchmark com-
press and Java Grande benchmark moldyn. We measure the
number of cycles of execution time, number of retired Pen-
tium 4 instructions, numbers of retired Pentium 4 load and
store micro-operations, number of level 1 data cache misses,
number of indirect branches retired and number of retired
indirect branches mispredicted.
Figures 11 and 12 show that threaded dispatch is much
more efficient than switch dispatch. The interpreters that
use switch dispatch require far more cycles and executed
instructions, and the indirect branch misprediction rate is
significantly higher.
When we compare the stack and register versions of our
JVM, we see that the register JVM is much more efficient
in several respects. It requires significantly less executed
instructions than the stack-based JVM. More significantly,
for the compress benchmark, it requires less than half the
number of indirect branches. Given the large rate of indirect

branch misprediction, and the high cost of indirect branches,
it is not surprising that the virtual register implementation
of the JVM is faster.
Figures 11 and 12 show that uop load for threaded VM is
much higher than switch VM. The most likely reasons for
such case is that it is more difficult for compiler to optimize
the registers allocation for threaded interpreter loop than
switch-based one. It is easier for compiler to recognize the
switch-based interpreter loop and different segment of switch
statement. On the other hand, the threaded interpreter loop
consists lots of code segments with labels and the execution
of bytecode jumps around those labels. Obviously, it is much
easier for compiler to optimize register allocation in switch-
based interpreter loop than a threaded one.

6.6 Discussion
Our implementation of the register-based VM translates
the stack-based bytecode into register-based bytecode at the
runtime. We don’t propose to do so in the real-life imple-
mentation. The purpose of our implementation is to eval-
uate the register-based VM. Our register-based JVM im-
plementation came from the stack-based JVM implementa-
tion. Except for the necessary adaption of interpreter loop,
garbage-collection and exception handling to the new in-
struction format, there is very little change to its original
code segments to interpret bytecode instructions. The ob-
jective of doing so is to provide a fair comparison between
the stack-based and the register-based JVM.
Another technique to eliminate redundant stack-load and
-store move instructions would be to use register coalesc-
ing. However, the technique is less efficient and more com-
plex than our simple copy propagation algorithm because
it involves repeatedly doing data flow analysis and building
interference graph. Moreover, our copy propagation is so
effective that only less than 2% of move instructions are re-
maining in the static code while the results reported in [13]
are only about 96% of move instructions removed by the
most aggressive register coalescing and 86% move instruc-
tions removed in [8].
Super-instruction is an another technique to reduce the
number of indirect branches and to eliminate intermediate
storage of result on the stack. In most cases, the per-
formance improvement are quite modest[4]. Our prelimi-
nary study estimates that around 512 extra superinstruc-
tions must be added to the interpreter to achieve the same
static instruction reduction presented in this paper.
The arithmetic instruction format in our register-based
JVM use three-addresses. Another obvious way to reduce
code size is to use two-address instruction format for these
instructions. We choose to use three-address instruction for-
mat in order to improve the chances of our copy propaga-
tion. Moreover, the static arithmetic instructions consist of,
on average, only 6.28% of all instructions in SPECjvm98
client benchmarks. Most of the individual arithmetic in-
structions are statically less than 1%. The contribution of
using two addresses arithmetic instruction format to code
size reduction is very small.
After the copy propagation, most of the stack slots are
not used anymore. One area of improvements that we can
make is to do the dataflow analysis and try to compact the
virtual register usage so that the size of Java frame can
become smaller. This will probably have small impact on
memory usage and performance.

162

Given a computation task, a register-based VM inherently
needs far fewer instructions than a stack-based VM. In our
case, our register-based JVM implementation can reduce
the static number of bytecode instructions by 43.47% and
the dynamic number of executed bytecode instructions by
47.21% when compared to those of the stack-based JVM.
The reduction of executed bytecode instructions leads to
fewer real machine instructions for the benchmarks and sig-
nificant smaller number of indirect branches, which is very
costly when mispredictions of indirect branches happen. On
the other hand, the larger codesize (25.05% larger) could re-
sults in possible higher level-1 data cache misses and load/store
operations for processor. In terms of running time, the
benchmark results show that our register-based JVM has an
average 30.69%(switch) & 29.36%(threaded) improvement
on Pentium 3 and 32.28%(switch) & 26.53%(threaded) on
Pentium 4. This is a very strong indication that the register
architecture is more superior for implementing interpreter-
based virtual machine that the stack architecture.

7. CONCLUSIONS
A long standing question has been whether virtual stack
or virtual register VMs can be executed more efficiently us-
ing an interpreter. Virtual register machines can be an at-
tractive alternative to stack architectures because they allow
the number of executed VM instructions to be substantially
reduced. In this paper we have built on the previous work
on Davis et al [5], which counted the number of instructions
for the two architectures using a simple translation scheme.
We have presented a much more sophisticated translation
and optimization scheme for translating stack VM code to
register code, which we believe gives a more accurate mea-
sure of the potential of virtual register architectures. We
have also presented results for a real implementation in a
fully-featured, standard-compliant JVM.
We found that a register architecture requires an average
of 47% fewer executed VM instructions, and that the re-
sulting register code is 25% larger than the correpsonding
stack code. The increased cost of fetching more VM code
due to larger code size involves only 1.07% extra real ma-
chine loads per VM instruction eliminated. On a Pentium
4 machine, the register machine required 32.3% less time to
execute standard benchmarks if dispatch is performed using
a C switch statement. Even if more efficient threaded dis-
patch is available (which requires labels as first class values),
the reduction in running time is still around 26.5% for the
register architecture.

8. REFERENCES
[1] Spec release spec jvm98, first industry-standard
benchmark for measuring java virtual machine
performance. Press Release, page
http://www.specbench.org/osg/jvm98/press.html,
August 19 1998.

[2] M. Berndl, B. Vitale, M. Zaleski, and A. D. Brown.
Context threading: A flexible and efficient dispatch
technique for virtual machine interpreters. In 2005
International Symposium on Code Generation and
Optimization, March 2005.

[3] M. Bull, L. Smith, M. Westhead, D. Henty, and
R. Davey. Benchmarking java grande application. In
Second Ineternational Conference and Exhibtion on

the Practical Application of Java. Manchester, UK,
April 2000.

[4] K. Casey, D. Gregg, M. A. Ertl, and A. Nisbet.
Towards superinstructions for java interpeters. In
Proceedings of the 7th International Workshoop on
Software and Compilers for Embedded Systems
(SCOPES 03), pages 329–343, September 2003.

[5] B. Davis, A. Beatty, K. Casey, D. Gregg, and
J. Waldron. The case for virtual register machines. In
Interpreters, Virtual Machines and Emulators
(IVME ’03), pages 41–49, 2003.

[6] M. A. Ertl. Stack caching for interpreters. In
SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 315–327, 1995.

[7] M. A. Ertl and D. Gregg. The behaviour of efficient
virtual machine interpreters on modern architectures.
In Euro-Par 2001, pages 403–412. Springer
LNCS 2150, 2001.

[8] L. George and A. W. Appel. Iterated register
coalescing. Technical Report TR-498-95, Princeton
University, Computer Science Department, Aug. 1995.

[9] J. Gosling. Java Intermediate Bytecodes. In Proc.
ACM SIGPLAN Workshop on Intermediate
Representations, volume 30:3 of ACM Sigplan Notices,
pages 111–118, San Francisco, CA, Jan. 1995.

[10] D. Gregg, A. Beatty, K. Casey, B. Davis, and
A. Nisbet. The case for virtual register machines.
Science of Computer Programming, Special Issue on
Interpreters Virtual Machines and Emulators, 2005.
To appear.

[11] B. McGlashan and A. Bower. The interpreter is dead
(slow). Isn’t it? In OOPSLA’99 Workshop: Simplicity,
Performance and Portability in Virtual Machine
design., 1999.

[12] G. J. Myers. The case against stack-oriented
instruction sets. Computer Architecture News,
6(3):7–10, August 1977.

[13] J. Park and S. mook Moon. Optimistic register
coalescing, Mar. 30 1999.

[14] I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. In SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 291–300, 1998.

[15] P. Schulthess and E. Mumprecht. Reply to the case
against stack-oriented instruction sets. Computer
Architecture News, 6(5):24–27, December 1977.

[16] P. Winterbottom and R. Pike. The design of the
Inferno virtual machine. In IEEE Compcon 97
Proceedings, pages 241–244, San Jose, California, 1997.

163

